
Topology and its Applications 190 (2015) 42–58
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Products of bounded subsets of paratopological groups

Iván Sánchez ∗, Mikhail G. Tkachenko 1

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, 
Col. Vicentina, Del. Iztapalapa, C.P. 09340, D.F., Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 February 2014
Received in revised form 19 July 
2014
Accepted 11 March 2015
Available online xxxx

MSC:
primary 22A05, 54H11
secondary 54D30, 54G20

Keywords:
Compact
Precompact
Bounded
Strongly bounded
Hausdorff number
Totally ω-narrow

We prove that if Bi is a bounded subset of a totally ω-narrow paratopological 
group Gi, where i ∈ I, then 

∏
i∈I Bi is bounded in 

∏
i∈I Gi. The same conclusion 

remains valid in the case of products of bounded subsets of Hausdorff commutative 
paratopological groups with countable Hausdorff number or products of Lindelöf 
paratopological groups. In fact, we show that if B is a bounded subset of a 
paratopological group G satisfying one of the conditions (a)–(d) below, then B
is strongly bounded in G:

(a) G is totally ω-narrow;
(b) G is commutative, Hausdorff, and has countable Hausdorff number;
(c) G is saturated and weakly Lindelöf;
(d) G is Lindelöf.

These results imply that boundedness of subsets is productive in the classes of 
paratopological groups listed in (a)–(d).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The product of an arbitrary family of pseudocompact topological groups is pseudocompact—this is the 
celebrated theorem proved by Comfort and Ross in [7]. Recently, A. Ravsky [13] proved a similar result for 
products of pseudocompact paratopological groups. To be more accurate, we have to reformulate Ravsky’s 
theorem as follows: An arbitrary product of feebly compact paratopological groups is feebly compact. As 
usual, a space X is called feebly compact if every locally finite family of open sets in X is finite. Feebly 
compact spaces are not assumed to satisfy any separation axiom, while pseudocompact spaces are necessarily 
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Tychonoff. It is clear that feeble compactness and pseudocompactness coincide in Tychonoff spaces, so the 
former notion is a ‘right’ extension of the latter one to non-Tychonoff spaces.

The Comfort–Ross theorem on the productivity of pseudocompactness in topological groups admits 
several extensions to wider classes of spaces (see [1,6,31,32]). Another generalization was obtained by the 
second-listed author in [22, Theorem 2.2]: If Bi is a bounded subset of a topological group Gi, for each 
i ∈ I, then 

∏
i∈I Bi is bounded in 

∏
i∈I Gi.

Let us recall that a subset B of a space X is said to be bounded in X if every locally finite family of 
open sets in X contains only finitely many elements that meet B. Hence boundedness is a relative version 
of feeble compactness. It is clear from the definition that a subset B of a Tychonoff space X is bounded in 
X if and only if every continuous real-valued function defined on X is bounded on B.

With Ravsky’s theorem in mind, it is natural to ask whether boundedness remains productive for subsets 
of paratopological groups (see [19, Problem 2.16] and [26, Problem 7.1]). We prove in Theorem 2.8 that 
this is indeed the case if the paratopological groups are additionally assumed to be totally ω-narrow (the 
factors in the theorem are not assumed to satisfy any separation axiom). The same conclusion is valid for 
products of bounded subsets of Hausdorff commutative paratopological groups with countable Hausdorff 
number (Corollary 3.10) and for products of bounded subsets of saturated, weakly Lindelöf paratopological 
groups (Corollary 3.14). The latter fact implies that a similar conclusion holds for products of bounded 
subsets of precompact paratopological groups (see Corollary 3.16).

The key technical notion in this article is the one called strong boundedness (see Definition 2.3). It is 
known that every bounded subset of a topological group is strongly bounded in the group [24, Theorem 2]. 
We show that in all the aforementioned cases, a bounded subset of a paratopological group turns out to be 
strongly bounded in the group. Then we apply the fact that strong boundedness is productive for subsets 
of topological spaces [22, Theorem 2.6]. The question of whether a bounded subset B of an arbitrary 
paratopological group G is strongly bounded in G remains open, even if B is countably compact (see 
Problem 5.1).

Section 5 of the article contains several open problems on bounded sets in paratopological groups which 
are supplied with brief comments.

1.1. Notation, terminology, and preliminary facts

A paratopological group is a group with a topology such that multiplication on the group is jointly 
continuous. The wording an isomorphism of paratopological groups does not necessarily mean that the 
isomorphism in question is continuous.

If τ is the topology of a paratopological group G, then the family

τ−1 = {U−1 : U ∈ τ}

is also a topology on G and G′ = (G, τ−1) is again a paratopological group conjugated to G. It is clear that 
the inversion on G is a homeomorphism of G onto G′. The upper bound τ∗ = τ ∨ τ−1 is a topological group 
topology on G and G∗ = (G, τ∗) is a topological group associated to G.

A paratopological (topological) group G is said to be ω-narrow if for every neighborhood U of the neutral 
element in G, there exists a countable set C ⊆ G such that CU = G = UC. We call a paratopological 
group G totally ω-narrow if the topological group G∗ associated to G is ω-narrow. In topological groups, 
total ω-narrowness and ω-narrowness coincide, but the Sorgenfrey line is an example of an ω-narrow (even 
Lindelöf) paratopological group which fails to be totally ω-narrow.

A paratopological group G is ω-balanced if for every neighborhood U of the identity e in G, one can find 
a countable family γ of open neighborhoods of e in G such that for every x ∈ G, there exists V ∈ γ with 
xV x−1 ⊆ U . It is clear that every paratopological Abelian group is ω-balanced.
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A subset U of a space X is called regular open if U = IntU . Given a space (X, τ), denote by τ ′ the 
topology on X whose base consists of regular open subsets of (X, τ). The space (X, τ ′) is said to be the 
semiregularization of (X, τ) and is denoted by Xsr . It is easy to see that τ ′ ⊆ τ and that the spaces (X, τ)
and (X, τ ′) have the same regular open subsets. A space whose regular open subsets form a base for its 
topology is called semiregular.

Answering a question posed by the authors in a previous version of this article, T. Banakh and A. Ravsky 
[4] established the following useful fact.

Theorem 1.1. Let N be an arbitrary subgroup of a paratopological group G. Then the semiregularization 
(G/N)sr of the quotient space G/N satisfies the T3 separation axiom. If therefore G/N is Hausdorff, then 
(G/N)sr is a regular space.

The operation of semiregularization has another useful property mentioned in [13, Lemma 20]:

Lemma 1.2. Let {Xi : i ∈ I} be a family of spaces and X =
∏

i∈I Xi the product of this family. Then the 
semiregularization of X is naturally homeomorphic to the product space 

∏
i∈I(Xi)sr .

Another useful operation in the category of paratopological groups is the so-called topological group 
reflection. Given a paratopological group G, the topological group reflection of G, denoted by G∗, is the group 
G endowed with the finest topological group topology weaker than the original topology of G. A description 
of the topology of G∗ in terms of the group G is given in [25]. It is easy to verify that the operation of 
taking the topological group reflection is a covariant functor from the category of paratopological groups 
to the category of topological groups. This means, in particular, that for every continuous homomorphism 
f : G → H of paratopological groups, the corresponding homomorphism f∗: G∗ → H∗ coinciding with f
pointwise is also continuous.

2. Bounded sets in totally ω-narrow paratopological groups

Let B be a subset of a space X. We say that X is regular on B if for every point x ∈ B and every closed 
subset F of B with x /∈ F , the sets {x} and F have disjoint open neighborhoods in X. It is clear that a 
regular space X is regular on every set B ⊆ X.

Lemma 2.1. Let f : X → Y be a continuous one-to-one mapping and B a bounded subset of X. Suppose also 
that X is regular on B and every point of Y is the intersection of countably many of its closed neighborhoods. 
Then the restriction of f to B is a homeomorphism.

Proof. Suppose for a contradiction that the restriction of f to B is not a homeomorphism when considered 
as a mapping of B onto f(B). Then we can find a point x ∈ B and an open neighborhood U of x in X
such that (B ∩ f−1(O)) \ U �= ∅, for every neighborhood O of the point y = f(x) in Y . Then F = B \ U
is a closed subset of B and x /∈ F , so there exist disjoint open sets Ux and UF in X such that x ∈ Ux and 
F ⊆ UF . Then the open neighborhood V = U ∩ Ux of x in X satisfies V ∩B ⊆ U .

It follows from our assumption about Y that there exists a decreasing sequence {On : n ∈ ω} of open 
neighborhoods of y in Y such that {y} =

⋂
n∈ω On. Then Wn = f−1(On) \ V is an open subset of X and 

our choice of x ∈ B and the sets U and V implies that Wn ∩ B �= ∅, for each n ∈ ω. We claim that the 
family {Wn : n ∈ ω} is locally finite in X. Indeed, since f is continuous and one-to-one, it follows from 
f(Wn) ⊆ On for n ∈ ω that the family {Wn : n ∈ ω} can accumulate only at the point x. Since Wn ∩V = ∅
for each n ∈ ω, our claim follows.

Each element of the infinite locally finite family {Wn : n ∈ ω} meets B, so B fails to be bounded. This 
contradiction completes the proof. �
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It is worth noting that in Lemma 2.1, the condition ‘f is one-to-one’ can be weakened to ‘the restriction 
of f to B is one-to-one’.

Corollary 2.2. Let f : X → Y be a continuous one-to-one mapping of a regular space X to a space Y . Suppose 
also that every point of Y is the intersection of countably many of its closed neighborhoods. Then:

(a) the restriction of f to every bounded subset of X is a homeomorphism;
(b) the image f(B) of a closed bounded subset B of X is closed in Y .

Proof. The claim in (a) follows directly from Lemma 2.1, so it suffices to verify (b). Suppose that B is a 
closed bounded subset of X. If y ∈ Y \ f(B), take a point x ∈ X such that f(x) = y. Then B′ = B ∪ {x}
is a bounded subset of X and x is isolated in B′, so (a) implies that y = f(x) is isolated in f(B) ∪ {y}. It 
follows that f(B) is closed in Y . �
Definition 2.3. A subset B of a space X is said to be strongly bounded in X if every infinite family of 
open sets in X each of which meets B, contains an infinite subfamily {Un : n ∈ ω} satisfying the following 
property:

(∗) For every filter F of infinite subsets of ω, the set 
⋂

F∈F
⋃

n∈F Un is non-empty.

It is clear that every strongly bounded subset of X is bounded in X, but the converse is false (see [10]).
The proof of the following lemma is straightforward, but we present it here for the sake of completeness.

Lemma 2.4. Let Gsr be the semiregularization of a paratopological group G. A subset B of G is bounded in 
G iff B is bounded in Gsr . Similarly, B is strongly bounded in G iff B is strongly bounded in Gsr .

Proof. It is clear that B is bounded in Gsr , for each bounded subset B of G. Suppose that B ⊆ G is not 
bounded in G. Then there exists an infinite locally finite family {Un : n ∈ ω} of open sets in G such that 
Un ∩B �= ∅ for each n ∈ ω. We claim that the family {IntUn : n ∈ ω} of open sets in Gsr is locally finite in 
Gsr . Indeed, for an arbitrary point x ∈ G, take an open neighborhood V of x which meets at most finitely 
many of Un’s. Then the set i(IntV ) is an open neighborhood of x in Gsr which meets only finitely many 
elements of the family {IntUn : n ∈ ω}. Since each open set IntUn meets B, the set B is not bounded in 
Gsr . This proves the first claim of the lemma.

Let B be a strongly bounded subset of Gsr . Given a family {Un : n ∈ ω} of open subsets of G meeting B, 
we define the sets Vn = IntUn, for n ∈ ω. Then each of the sets Vn’s is open in Gsr and meets B since 
Un ⊆ Vn. Suppose that the family {Vn : n ∈ ω} satisfies condition (∗) of Definition 2.3. Hence there exists 
a point x0 ∈ G such that every neighborhood of x0 in Gsr meets infinitely many elements of the family 
{Vn : n ∈ F}, for each F ∈ F . We claim that the same happens for every neighborhood of x0 in G, i.e. 
the family {Un : n ∈ ω} also satisfies condition (∗). Indeed, take a filter F of infinite subsets of ω and an 
element F ∈ F . If U is an open neighborhood of x0 in G, let V = IntU . Then V is an open neighborhood 
of x0 in Gsr , so V ∩ Vn �= ∅ for infinitely many n ∈ F . It now follows from the definition of V and Vn that 
U ∩ Un �= ∅ for each such an element n ∈ F . Hence B is strongly bounded in G. The converse implication 
is evident. �

The following fact and its proof are taken from [33].

Lemma 2.5. Let f : X → Y be a continuous mapping of X to a T3-space Y . Then f remains continuous as 
a mapping of the semiregularization Xsr of X to Y .
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Proof. Take a point x ∈ X and a neighborhood U of f(x) in Y . Let V be an open neighborhood of f(x) such 
that V ⊆ U . Since f is continuous on X, we can find an open neighborhood O of x in X such that f(O) ⊆ V . 
Hence f(O) ⊆ V ⊆ U and, consequently, f(IntO) ⊆ f(O) ⊆ U . Since IntO is an open neighborhood of x
in Xsr , we see that f is continuous on Xsr . �

The following fact complements Lemma 2.5.

Lemma 2.6. Let f : X → Y be a continuous d-open mapping. Then f remains continuous as a mapping of 
Xsr to Ysr .

Proof. Take an arbitrary point x ∈ Xsr and an open neighborhood U of y = f(x) in Ysr . We can assume 
without loss of generality that U is a regular open set in the space Y . By the continuity of the mapping 
f : X → Y , there exists an open neighborhood V of x in X such that f(V ) ⊆ U . Since V ⊆ IntV (the 
interior and closure are taken in X), the set V0 = IntV is an open neighborhood of x in Xsr . Clearly, V0 is 
open in X and V is dense in V0.

Since the mapping f : X → Y is d-open, there exists an open set W in Y which contains f(V0) as a dense 
subset. Using the continuity of f , we obtain that

f(V0) ⊆ W ⊆ W = f(V0) = f(V ) ⊆ U,

where the closures and interior are taken in Y . Since W is open in Y , the above inclusions imply that 
f(V0) ⊆ IntU = U . This proves the continuity of the mapping f : Xsr → Ysr . �
Theorem 2.7. Every bounded subset of a totally ω-narrow paratopological group G is strongly bounded.

Proof. It follows from Corollary 2.10 of [29] that, for a subset A of an arbitrary paratopological group H, 
the set ϕH,r(A) is bounded (strongly bounded) in the regular reflection Reg(H) of H if and only if A is 
bounded (strongly bounded) in H, where ϕH,r is the canonical homomorphism of H onto Reg(H). It is also 
clear that Reg(H) is totally ω-narrow provided so is H. Therefore, it suffices to prove the theorem in the 
case of a regular paratopological group.

Let B be a bounded subset of a regular totally ω-narrow paratopological group G. Suppose that γ = {Un :
n ∈ ω} is an infinite family of open sets in G such that B∩Un �= ∅, for each n ∈ ω. We claim that γ satisfies 
condition (∗) of Definition 2.3. Since the group G is regular and totally ω-narrow, it embeds as a subgroup 
into a product of regular second countable paratopological groups [14, Corollary 2.4]. Equivalently, there 
exists a family L of continuous homomorphisms of G onto regular second countable paratopological groups 
which generates the original topology of G. Therefore, we can additionally assume that for every n ∈ ω, the 
set Un has the form Un = p−1

n (Ũn), where pn ∈ L and Ũn is an open subset of the regular second countable 
paratopological group pn(G). Let p be the diagonal product of the family {pn : n ∈ ω} and H = p(G). 
Then p is a continuous homomorphism of G onto the regular second countable paratopological group H, 
a subgroup of the product 

∏
n∈ω pn(G). It follows from the definition of p that for every n ∈ ω, there exists 

an open subset Wn of H satisfying Un = p−1(Wn).
Let N be the kernel of the homomorphism p and K = G/N the corresponding quotient group. Denote by f

the quotient homomorphism of G onto G/N . Clearly there exists a continuous isomorphism (not necessarily 
a homeomorphism) ϕ of G/N onto H satisfying p = ϕ ◦ f . Notice that the group G/N is Hausdorff since ϕ
is a continuous bijection and H is regular.

Denote by S the semiregularization of the group G/N and let i be the identity mapping of G/N onto S. 
Then S is a regular space by Theorem 1.1. Let ψ: S → H be a bijection satisfying ϕ = ψ ◦ i. As ϕ is 
continuous, H is regular, and S is the semiregularization of G/N , it follows from Lemma 2.5 that ψ is also 
continuous.
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G
f

p

G/N

i
ϕ

H S
ψ

The sets f(B), i(f(B)), and p(B) are bounded in G/N , S, and H, respectively. The closure of i(f(B))
in S, say, C is also bounded, so Corollary 2.2 implies that ψ(C) is a closed bounded subset of H. As H
is regular and second countable, the set ψ(C) is compact. Applying Corollary 2.2 once again, we conclude 
that the restriction of ψ to C is a homeomorphism of C onto ψ(C), so the set C is compact as well.

For every n ∈ ω, let On = ψ−1(Wn). Since On ∩ C �= ∅ for each n ∈ ω, we conclude that

C ∩
⋂
F∈F

⋃
n∈F

On �= ∅,

where F is a filter of infinite subsets of ω. Pick an arbitrary point z in the above intersection and take points 
y ∈ G/N and x ∈ G with i(y) = z and f(x) = y. We claim that x ∈

⋂
F∈F

⋃
n∈F Un. Indeed, since S is 

the semiregularization of the Hausdorff space G/N , the mapping i establishes a one-to-one correspondence 
between the regular closed sets in G/N and S. In other words, i−1(O) = i−1(O) is a regular closed subset 
of S, for every open subset O of S. Therefore, if Vn = i−1(On) for n ∈ ω, then y ∈

⋃
n∈F Vn, for each F ∈ F . 

Since the mapping f is open and continuous and f(x) = y, we have that

x ∈ f−1

( ⋃
n∈F

Vn

)
= f−1

( ⋃
n∈F

Vn

)
= p−1

( ⋃
n∈F

Wn

)
=

⋃
n∈F

Un,

for each F ∈ F . It follows that 
⋂

F∈F
⋃

n∈F Un �= ∅, so the family {Un : n ∈ ω} satisfies (∗). We have thus 
proved that B is strongly bounded in G. �

According to [22, Theorem 2.6], if Bi is a strongly bounded subset of a space Xi, where i ∈ I, then the 
product of 

∏
i∈I Bi is strongly bounded in 

∏
i∈I Xi. Combining this result with Theorem 2.7, we obtain the 

following:

Theorem 2.8. Let Bi be a bounded subset of a totally ω-narrow paratopological group Gi, for each i ∈ I. 
Then 

∏
i∈I Bi is bounded in 

∏
i∈I Gi.

Corollary 2.9. If A and B are bounded subsets of a totally ω-narrow paratopological group G, then the group 
product AB of the sets A and B is bounded in G.

Proof. Let us note that the subset AB of G is the image of the set A × B under the continuous mapping 
m of G ×G to G defined by m(x, y) = xy. Since the product A ×B is bounded in G ×G by Theorem 2.8, 
the set AB is bounded in G. �

It is also known that if B1 is a strongly bounded subset of a space X1 and B2 is a bounded subset of a 
space X2, then B1×B2 is bounded in X1×X2 [22, Corollary 2.5]. This fact along with Theorem 2.7 implies 
the next result:

Corollary 2.10. If B is a bounded subset of a totally ω-narrow paratopological group G and C is a bounded 
subset of a space Y , then B × C is bounded in G × Y .
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In the special case when a bounded subset B of a paratopological group G coincides with the whole 
of G (i.e. when G is feebly compact), one can drop the assumption of total ω-narrowness of the group G in 
Corollary 2.10:

Corollary 2.11. If G is a feebly compact paratopological group and C is a bounded subset of a space Y , then 
G × C is bounded in G × Y .

Proof. Let P = G ×Y . Then, according to Lemma 1.2, the semiregularization of P is naturally homeomor-
phic to the product Gsr ×Ysr of the semiregularizations of G and Y . By Lemma 2.4, it suffices to show that 
the set G × C is bounded in Gsr × Ysr .

Since G is feebly compact, it follows from [13, Lemma 9] that Gsr is a (not necessarily Hausdorff) 
topological group. Clearly Gsr is a continuous image of G, so the topological group Gsr is also feebly 
compact, i.e. Gsr is bounded in itself. Since C is bounded in Ysr , [10, Theorem 1.2] implies that G × C is 
bounded in G × Y . �

3. Paratopological groups with countable Hausdorff number

Let us say that a paratopological group G has property (wH) if

⋂
U∈N (e)

U =
⋂

N (e).

As usual, N (e) stands for the family of open neighborhoods of the neutral element e in G. It is clear that 
G satisfies condition (wH) provided it is either Hausdorff or a T3-space. The following definition is slightly 
more general than the corresponding one in [23], where the Hausdorff number was defined only for Hausdorff 
paratopological groups.

Definition 3.1. Let G be a paratopological group with property (wH). The Hausdorff number of G is the 
minimum cardinal number κ ≥ 1 such that for every neighborhood U of the neutral element e in G, there 
exists a family γ of open neighborhoods of e in G such that 

⋂
V ∈γ V V −1 ⊆ U and |γ| ≤ κ.

It follows from the above definition that a paratopological group G satisfying Hs(G) = 1 is a topological 
group.

Every Lindelöf paratopological group satisfying the Hausdorff separation axiom has countable Hausdorff 
number [23, Proposition 2.4]. A direct verification shows that the same conclusion remains valid for Lindelöf 
paratopological groups with property (wH). It is also easy to see that the class of paratopological groups 
with countable Hausdorff number is productive [23, Proposition 2.3].

In this section we deduce from more general results that every bounded subset of a paratopological 
abelian group with countable Hausdorff number is strongly bounded (see Theorem 3.9). Therefore, bounded 
subsets of the groups from this class are stable with respect to taking arbitrary products (Corollary 3.10).

We start with several auxiliary results and known facts explaining our approach.
Given an arbitrary paratopological group G and a number i ∈ {0, 1, 2, 3, 3.5}, a Ti-reflection of G, denoted 

by Ti(G), is a pair (H, ϕG,i), where H is a paratopological group satisfying the Ti separation axiom and 
ϕG,i is a continuous homomorphism of G onto H with the following property: For every continuous mapping 
f : G → X to a Ti-space X, there exists a continuous mapping h: H → X such that f = h ◦ ϕG,i.
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G
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f

H

h
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Similarly, a regular reflection of a paratopological group G is a pair (H, ϕG,r), where H is a regular paratopo-
logical group and ϕG,r is a continuous homomorphism of G onto H such that every continuous mapping of 
G to a regular space admits a continuous factorization through ϕG,r. The corresponding group H is denoted 
by Reg(G). By ‘regular’ we mean ‘T1 & T3’.

Abusing of terminology, we will usually refer to T2(G) and Reg(G) as the Hausdorff and regular reflection, 
respectively, of the group G. It is shown in Propositions 2.2 and 2.5 of [27] that for every paratopological 
group G, the Hausdorff and regular reflections of G exist and are unique up to a topological isomorphism.

In fact, these results are proved in [27] for the wider class of semitopological groups, so T2(G) and 
Reg(G) are formally known to be semitopological groups only. However, the functors T2 and Reg preserve 
paratopological groups as well, as mentioned on page 374 of [27] or in the introduction of [28].

The following fact explains our interest in the Hausdorff and regular reflections of paratopological groups 
(see Proposition 2.9 and Corollary 2.10 of [29]):

Proposition 3.2. Let G be an arbitrary paratopological group. The following conditions are equivalent for a 
subset B of G:

(a) B is (strongly) bounded in G;
(b) ϕG,2(B) is (strongly) bounded in T2(G);
(c) ϕG,r(B) is (strongly) bounded in Reg(G).

Proposition 3.2 shows that one can study (strongly) bounded sets in regular paratopological groups 
exclusively.

Another useful and important fact is that the regular reflection of a paratopological group G can be 
obtained from G in two steps (see Corollary 2.8 of [28]):

Proposition 3.3. For every paratopological group G, the regular reflection of G is topologically isomorphic to 
the semiregularization of T2(G), i.e. Reg(G) ∼= (T2(G))sr . In particular, Reg(G) is an image of T2(G) under 
a continuous one-to-one homomorphism.

A subgroup H of a topological group G is called admissible if there exists a sequence {Un : n ∈ ω} of 
open symmetric neighborhoods of the identity in G such that U3

n+1 ⊆ Un for each n ∈ ω and H =
⋂

n∈ω Un.

Lemma 3.4. ([2, Lemma 5.5.2]) Let G be a topological group. Then:

a) every admissible subgroup H of G is closed in G;
b) every neighborhood of the identity in G contains an admissible subgroup;
c) the intersection of countable many admissible subgroups of G is again an admissible subgroup of G.

According to [3], a paratopological group G is 2-oscillating if for any neighborhood U of the identity e in 
G there is a neighborhood V of e such that V −1V ⊆ UU−1. All precompact and all abelian paratopological 
groups are 2-oscillating (see [3, Proposition 3]).
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Lemma 3.5. Let G be a 2-oscillating paratopological group with countable Hausdorff number. Then for every 
family {Wn : n ∈ ω} ⊆ N (e), there exists a closed subgroup H of G∗ such that G∗/H is submetrizable and 
H ⊆

⋂
n∈ω Wn.

Proof. Let {Wn : n ∈ ω} be a countable family of open neighborhoods of the identity e in G. Since G has 
countable Hausdorff number, there exists a countable family γ ⊆ N (e) such that 

⋂
V ∈γ V V −1 ⊆

⋂
n∈ω Wn. 

It follows from [3, Theorem 1] that the set V V −1 is open in G∗ for each V ∈ N (e). By Lemma 3.4, we can 
find an admissible subgroup H of G∗ satisfying H ⊆

⋂
V ∈γ V V −1 ⊆

⋂
n∈ω Wn. Also, Lemma 3.4 implies 

that H is closed in G∗. Since H is an admissible subgroup of G∗, the quotient space G∗/H is submetrizable 
(see [2, Lemma 6.10.7]). Hence G/H is submetrizable as well. �
Lemma 3.6. If G is a 2-oscillating paratopological group, then so is Reg(G).

Proof. Put H = Gsr . Let us show that H is 2-oscillating. Take an open neighborhood U of the identity e
in G. Then IntU is an open neighborhood of e in H. Since G is 2-oscillating, the set WW−1 is open in 
G∗ for each open neighborhood of e in G. So we can find an open neighborhood V of e in G such that 
(V V −1)2 ⊆ (IntU)(IntU)−1. It is clear that V ⊆ V V −1, whence IntV ⊆ V V −1. Hence (IntV )−1 ⊆ V V −1. 
We conclude therefore that

(IntV )−1(IntV ) ⊆ (V V −1)2 ⊆ (IntU)(IntU)−1.

This proves that the group H = Gsr is 2-oscillating.
According to [27, Theorem 3.8] and [28, Theorem 2.5], we have the equalities Reg(G) = T0(T3(G))

and T3(G) = Gsr = H. There exists a continuous open homomorphism ϕH,0 of H onto T0(H) (see [27, 
Proposition 2.5]). Since H is 2-oscillating and ϕH,0 is a continuous open homomorphism, the paratopological 
group T0(H) = Reg(G) is 2-oscillating as well. �
Theorem 3.7. Let G be a 2-oscillating paratopological group satisfying the condition Hs(Reg(G)) ≤ ω. Then 
all bounded subsets of G are strongly bounded.

Proof. It follows from Proposition 3.2 that there is a natural correspondence between bounded subsets of the 
groups G and Reg(G), and the same is valid for strongly bounded subsets of G and Reg(G). By Lemma 3.6, 
Reg(G) is a 2-oscillating paratopological group. Therefore, we can assume without loss of generality that 
G = Reg(G), i.e. that G is regular.

Let B be a bounded subset of G. Suppose that γ = {Un : n ∈ ω} is an infinite family of open sets in G
such that B ∩ Un �= ∅, for each n ∈ ω.

Let us show that γ satisfies condition (∗) of Definition 2.3. For every n ∈ ω, we can find xn ∈ B∩Un and 
Wn ∈ N (e) such that xnW

2
n ⊆ Un. By Lemma 3.5, there exists a closed subgroup N of G∗ such that G∗/N

is submetrizable and N ⊆
⋂

n∈ω Wn. Clearly, the identity mapping of G/N onto G∗/N is continuous. Hence, 
by Lemma 2.5, the identity mapping of (G/N)sr onto G∗/N is also continuous. Since G∗/N is submetrizable, 
the space (G/N)sr is submetrizable and hence Hausdorff. So by Theorem 1.1, the space (G/N)sr is regular.

Let f be the quotient mapping of G onto G/N . Then f(B) is bounded in G/N and in (G/N)sr . Denote 
by C the closure of f(B) in (G/N)sr . Applying Corollary 2.2, we conclude that C is compact. This implies 
that the set f(B) is strongly bounded in (G/N)sr . By Lemma 2.4, f(B) is strongly bounded in G/N .

Put On = f(xnWn), for every n ∈ ω. Since the mapping f is open, On is open in G/N and On∩f(B) �= ∅
for each n ∈ ω. As f(B) is strongly bounded in G/N , we conclude that

⋂ ⋃
On �= ∅.
F∈F n∈F
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Take a point y in the above intersection and choose x ∈ G such that f(x) = y. We claim that x ∈⋂
F∈F

⋃
n∈F Un. Indeed, let F be an arbitrary element of F . Since the mapping f is open and continuous, 

we have that

x ∈ f−1

( ⋃
n∈F

On

)
= f−1

( ⋃
n∈F

On

)
=

⋃
n∈F

f−1(On)

=
⋃
n∈F

xnWnN ⊆
⋃
n∈F

xnW 2
n ⊆

⋃
n∈F

Un.

It follows that x ∈
⋂

F∈F
⋃

n∈F Un �= ∅, so the family {Un : n ∈ ω} satisfies (∗) of Definition 2.3. Thus B
is strongly bounded in G. �
Remark 3.8. The argument in the proof of Theorem 3.7 implies the following: If the regular reflection, 
Reg(G), of a paratopological group G is 2-oscillating and satisfies Hs(Reg(G)) ≤ ω, then every bounded 
subset of G is strongly bounded.

By Lemma 3.6, the latter result is a more general and symmetric form of Theorem 3.7.

According to [14, Theorem 2.2], every regular totally ω-narrow paratopological group G satisfies 
Ir(G) ≤ ω. The inequality Ir(G) ≤ ω means that for every neighborhood U of the neutral element e
in G, one can find an open neighborhood V of e and a countable family γ of neighborhoods of e such that ⋂

W∈γ VW−1 ⊆ U . Since the inequality Hs(G) ≤ Ir(G) holds for every regular paratopological group [23, 
Proposition 3.5], we see that the class of Hausdorff (even regular) paratopological groups with countable 
Hausdorff number is strictly wider than the class of regular totally ω-narrow paratopological groups. Hence 
the next result complements Theorem 2.7.

Corollary 3.9. Every bounded subset of a Hausdorff commutative paratopological group G with Hs(G) ≤ ω

is strongly bounded.

Proof. It is clear that every commutative paratopological group is 2-oscillating. Hence the conclusion follows 
from Theorem 3.7. �

Since the product of a family of strongly bounded subsets is strongly bounded in the product of spaces 
[22, Theorem 2.6], the following result is immediate from Corollary 3.9.

Corollary 3.10. Let Bi be a bounded subset of a Hausdorff commutative paratopological group Gi satisfying 
Hs(Gi) ≤ ω, where i ∈ I. Then the set 

∏
i∈I Bi is bounded in 

∏
i∈I Gi.

We recall that a paratopological group G is saturated if the set U−1 has a non-empty interior, for each 
neighborhood U of the neutral element in G.

Corollary 3.11. If a saturated paratopological group G satisfies Hs(Reg(G)) ≤ ω, then all bounded subsets of 
G are strongly bounded.

Proof. By [3, Proposition 3], every saturated paratopological group is 2-oscillating. It remains to apply 
Theorem 3.7. �

A space X is said to be weakly Lindelöf if every open covering of X contains a countable subfamily whose 
union is dense in X. Every space of countable cellularity as well as a space with a dense Lindelöf subspace 
is weakly Lindelöf.
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The next result is a special case of Theorem 3.7.

Theorem 3.12. Let G be a weakly Lindelöf paratopological group. If the group Reg(G) is saturated, then every 
bounded subset of G is strongly bounded.

Proof. Suppose that the regular reflection of G, say, H = Reg(G), is saturated. Then the group H is 
2-oscillating by [3, Proposition 3]. Since H is a continuous homomorphic image of G, the space H is weakly 
Lindelöf. Therefore, combining [14, Theorem 2.10] and [23, Proposition 3.5], we see that the Hausdorff 
number of the group H is countable. Then Theorem 3.7 implies that every bounded subset of H is strongly 
bounded. Finally it remains to apply Proposition 3.2 to conclude that every bounded subset of G is strongly 
bounded. �

It turns out that the operation of regular reflection preserves the class of saturated paratopological groups:

Lemma 3.13. If a paratopological group G is saturated, so is Reg(G).

Proof. It is clear that a continuous open homomorphic image of a saturated paratopological group is satu-
rated. Since the canonical homomorphism ϕG,2: G → T2(G) is continuous and open by [27, Proposition 2.5], 
we conclude that the Hausdorff reflection, T2(G), of the saturated group G is saturated.

According to Proposition 3.3, the group Reg(G) is topologically isomorphic to the semiregularization 
of T2(G). Therefore, to finish the proof, it suffices to verify that the semiregularization of a saturated 
paratopological group, say, H is saturated as well. Let U be an arbitrary open neighborhood of the neutral 
element e in H. Take an open neighborhood V of e in H such that V 2 ⊆ U and a non-empty open set W
in G satisfying W ⊆ V −1. Then W ⊆ WV −1 ⊆ V −1V −1 ⊆ U−1. Therefore,

IntW ⊆ W ⊆ U−1 ⊆ (IntU)−1.

Since the sets of the form IntO constitute a base for the group Hsr , where O runs through the family of 
non-empty open sets in H, we conclude that the group Hsr is saturated. �

Let us note that the implication in Lemma 3.13 cannot be inverted. Furthermore, there exists a non-
saturated paratopological group G such that the regular reflection of G is the trivial one-element group. 
Indeed, consider the additive group R endowed with the topology τ whose base consists of the sets [x, ∞), 
with x ∈ R. Then G = (R, τ) is a paratopological group and the set −[0, ∞) = (−∞, 0] has the empty 
interior, i.e. G is not saturated. It is easy to verify that the regular reflection of G is the trivial group (and, 
hence, is saturated).

It follows from Theorem 3.12 and Lemma 3.13 that every bounded subset of a saturated, weakly Lindelöf 
paratopological group is strongly bounded. Hence the following result is valid:

Corollary 3.14. Let Bi be a bounded subset of a saturated, weakly Lindelöf paratopological group Gi, where 
i ∈ I. Then the set 

∏
i∈I Bi is bounded in 

∏
i∈I Gi.

Since every precompact paratopological group is saturated [11, Proposition 2.1] and has countable cellu-
larity [3, Corollary 3], the following corollary is immediate from Theorem 3.12 and Lemma 3.13:

Corollary 3.15. Every bounded subset of a precompact paratopological group G is strongly bounded.

Corollary 3.16. Let Bi be a bounded subset of a precompact paratopological group Gi, for each i ∈ I. Then ∏
Bi is bounded in 

∏
Gi.
i∈I i∈I
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The following fact is of a pure topological character. It will be applied to paratopological groups in 
Theorem 3.18.

Proposition 3.17. The closure of a bounded subset B of a regular Lindelöf space X is compact and, hence, 
B is strongly bounded in X.

Proof. Denote by K the closure of B in X. Then K is also bounded in X. The space X is normal since it 
is regular and Lindelöf. Hence the closed set K is C-embedded in X. Therefore K is pseudocompact as a 
C-embedded bounded subset of a Tychonoff space. The subspace K of X being closed is also normal. We 
conclude that K is countably compact [8, Theorem 3.10.21]. Hence K is compact as a Lindelöf countably 
compact space and B is strongly bounded in X. �

Another version of Theorem 2.7 is given below.

Theorem 3.18. Let G be a paratopological group whose regular reflection is Lindelöf. Then every bounded 
subset of G is strongly bounded in G.

Proof. According to Proposition 3.2, a subset B of G is (strongly) bounded in G if and only if ϕG,r(B)
is (strongly) bounded in Reg(G), where ϕG,r is the canonical homomorphism of G onto Reg(G). There-
fore, we can assume that Reg(G) = G, i.e. that G is regular. The required conclusion now follows from 
Proposition 3.17. �

Since the property of being strongly bounded is productive, Theorem 3.18 implies the following:

Corollary 3.19. If Bi is a bounded subset of a Lindelöf paratopological group Gi, where i ∈ I, then 
∏

i∈I Bi

is bounded in 
∏

i∈I Gi.

One cannot strengthen ‘strongly bounded’ to ‘compact’ in the conclusion of Theorem 3.18 since there 
exists a Hausdorff, first countable, feebly compact, non-compact paratopological group (see [12, Example 3]).

4. Some discussions

In this short section we comment on how one can modify conditions in Theorems 3.7, 3.12, and 3.18 and 
then compare the generality of the modified results with the original ones.

The paratopological group G in Theorem 3.7 is assumed to be 2-oscillating and to satisfy the inequality 
Hs(Reg(G)) ≤ ω. The first of these conditions refers to the group G itself, while the second condition 
concerns to the regular reflection Reg(G). It is natural to ask, therefore, whether we really gain in generality 
referring to Reg(G) in place of G in Theorem 3.7.

First we comment on the condition Hs(Reg(G)) ≤ ω that appears in Theorem 3.7. In the following two 
results we establish clear relations between the Hausdorff numbers of the paratopological groups G (when 
Hs(G) is defined), T2(G), and Reg(G).

Lemma 4.1. If G is a paratopological group and the Hausdorff number of G is defined, i.e. G has property 
(wH), then Hs(G) = Hs(T2(G)).

Proof. Let P =
⋂
N (e), where N (e) is the family of open neighborhoods of the identity e in G. By [27, 

Theorem 3.1], N = P ∩ P−1 is the kernel of the canonical homomorphism ϕG,0: G → T0(G). If G has 
property (wH), then P =

⋂
U∈N (e) U . The set on the right hand part of the equality is the kernel of the 

canonical homomorphism ϕG,2: G → T2(G) and, hence, a closed subgroup of G [28, Theorem 2.1]. We 
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conclude that P is symmetric and that N = P . In turn, the two equalities involving P imply that the 
kernels of the homomorphisms ϕG,0 and ϕG,2 coincide. Since the homomorphisms ϕG,0 and ϕG,2 are open 
by [27, Proposition 2.5], it follows that the groups T0(G) and T2(G) are topologically isomorphic. More 
precisely, there exists a topological isomorphism f : T0(G) → T2(G) satisfying ϕG,2 = f ◦ ϕG,0.

We now apply [27, Theorem 3.1] according to which every open set U in G satisfies U = ϕ−1
G,0ϕG,0(U). 

Hence the same equality is valid for ϕG,2 in place of ϕG,0. In other words, the correspondence U �→ ϕG,2(U)
is a bijection between the topologies of G and T2(G). This readily yields the required equality Hs(G) =
Hs(T2(G)). �

Lemma 4.1 implies, in particular, that one can define the Hausdorff number of an arbitrary paratopo-
logical group G by letting Hs(G) = Hs(T2(G)). This definition becomes even more natural if we recall [28, 
Corollary 2.3]: If U and V are disjoint open sets in G, then ϕG,2(U) and ϕG,2(V ) are disjoint open sets in 
T2(G).

Lemma 4.2. Every paratopological group K with property (wH) satisfies the inequality Hs(Ksr) ≤ Hs(K). 
Therefore, Hs(Reg(G)) ≤ Hs(T2(G)), for each paratopological group G.

Proof. Since the group K has property (wH) and the semiregularization Ksr of K is a T3-space, the 
Hausdorff number of both groups K and Ksr is well defined. Let U be a neighborhood of the neutral 
element e in the group K satisfying Hs(K) = κ. There exists a family γ of open neighborhoods of e in K
such that 

⋂
V ∈γ V V −1 ⊆ U and |γ| ≤ κ. For every V ∈ γ, let OV = IntV . Then λ = {OV : V ∈ γ} is a 

family of open neighborhoods of e in Ksr and |λ| ≤ |γ| ≤ κ.
We claim that 

⋂
V ∈γ OV O

−1
V ⊆ U . Indeed, take an arbitrary point x ∈ K \ U . It follows from our choice 

of γ that there exists V ∈ γ such that V ∩xV = ∅. Since the sets V and xV are open in K and dense in OV

and xOV , respectively, we see that OV ∩ xOV = ∅ or, equivalently, x /∈ OV O
−1
V . Hence 

⋂
V ∈γ OV O

−1
V ⊆ U .

It is clear that the last inequality of the lemma follows from the first one and Proposition 3.3. �
It turns out that the difference between Hs(G) and Hs(Reg(G)) can be arbitrarily big, even for a Hausdorff 

paratopological group G. Indeed, a simple calculation shows that the feebly compact Hausdorff paratopo-
logical group G in [20, Theorem 1] satisfies Hs(G) = ℵ1, while Gsr = Reg(G) is a topological group and, 
hence, Hs(Reg(G)) = 1. Given an arbitrary uncountable cardinal κ, a similar construction can be applied to 
produce a feebly compact Hausdorff paratopological group H satisfying Hs(Reg(H)) = 1 and Hs(H) = κ. 
This observation and Lemma 4.2 explain why we use the Hausdorff number of the regular reflection of G
instead of Hs(G) or Hs(T2(G)) in Theorem 3.7.

Finally we show that the Hausdorff numbers of the groups Gsr and Reg(G) always coincide. This requires 
a lemma.

Lemma 4.3. Let G be a paratopological group satisfying the T3 separation axiom. Then Hs(G) = Hs(T0(G)).

Proof. Let N (e) be the family of open neighborhoods of the neutral element e in G and N =
⋂

U∈N (e)(U ∩
U−1). According to [27, Theorem 3.1], T0(G) ∼= G/N . Let f be the quotient homomorphism of G to 
G/N . Fix an element U ∈ N (e) and choose V ∈ N (e) such that V 2 ⊆ U . We can find a family γ of 
open neighborhoods of the neutral element ē in G/N such that 

⋂
O∈γ OO−1 ⊆ f(V ) and |γ| ≤ Hs(G/N). 

For every O ∈ γ, there exists WO ∈ N (e) such that f(WO) ⊆ O. Then 
⋂

O∈γ f(WOW
−1
O ) ⊆ f(V ) and ⋂

O∈γ f
−1f(WOW

−1
O ) ⊆ f−1f(V ) = V N , whence⋂

O∈γ

WOW
−1
O ⊆

⋂
O∈γ

f−1f(WOW
−1
O ) ⊆ V N ⊆ V 2 ⊆ U.

This proves that Hs(G) ≤ Hs(T0(G)).
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It remains to show that Hs(T0(G)) ≤ Hs(G). Take an arbitrary neighborhood O of ē in G/N . We 
can assume that O = f(U), for some U ∈ N (e). There exists a family {Vi : i ∈ I} ⊆ N (e) such that 
|I| ≤ Hs(G) and 

⋂
i∈I ViV

−1
i ⊆ U . For every i ∈ I, take Wi ∈ N (e) such that W 2

i ⊆ Vi. We claim that ⋂
i∈I f(Wi)f(Wi)−1 ⊆ O.
Indeed, since N ⊆ W−1

i and Wi ⊆ W 2
i ⊆ Vi for each i ∈ I, it follows that⋂

i∈I

f−1f(WiW
−1
i ) =

⋂
i∈I

WiW
−1
i N ⊆

⋂
i∈I

ViV
−1
i ⊆ U.

We conclude that 
⋂

i∈I f(Wi)f(Wi)−1 ⊆ f(U) = O. Therefore, Hs(T0(G)) ≤ Hs(G). This finishes the 
proof. �
Corollary 4.4. If G is a paratopological group, then Hs(Gsr) = Hs(Reg(G)).

Proof. Put H = Gsr . Then H is a paratopological group satisfying the T3 separation axiom, so [27, Propo-
sition 3.7] implies that Reg(G) = T0(H). Applying Lemma 4.3, we obtain the required conclusion. �
5. Open problems and comments

One of the main open problems about bounded subsets of paratopological groups is the following one:

Problem 5.1. Let B be a bounded subset of a paratopological group G.

(a) Is B strongly bounded in G?
(b) Is B strongly bounded in G provided B is countably compact?

It is clear that Theorems 2.7, 3.7, 3.12, 3.18 and Corollaries 3.9, 3.11, 3.15 answer item (a) of Problem 5.1
affirmatively in wide subclasses of paratopological groups.

Problems 5.2, 5.3, 5.6 and 5.7 below are special cases of Problem 5.1. In the next one we ask whether 
the condition “2-oscillating” imposed on the group G in Theorem 3.7 can be dropped:

Problem 5.2. Suppose that a Hausdorff paratopological group G satisfies Hs(G) ≤ ω. Is every bounded 
subset of G strongly bounded?

A slightly weaker form of Problem 5.2 is given below:

Problem 5.3. Let Bi be a bounded subset of a Hausdorff paratopological group Gi satisfying Hs(Gi) ≤ ω, 
where i ∈ I. Is the set 

∏
i∈I Bi bounded in 

∏
i∈I Gi?

It follows from [17, Proposition 3.2.14] that a Hausdorff paratopological group G of countable π-character 
satisfies Hs(G) ≤ ω. So it is natural to ask, after Problem 5.2, whether every bounded subset of a Hausdorff 
paratopological group of countable π-character is strongly bounded. The question is also motivated by [14, 
Corollary 26] according to which every bounded subset of a regular paratopological group with countable 
π-character is metrizable. We answer the above question in the affirmative and improve upon Corollary 26 of 
[14]. First we define the notion of a countably Hausdorff group introduced in [5] and then prove Lemma 5.4
on which the proof of Proposition 5.5 is based.

According to [5], a paratopological group H is countably Hausdorff if there exists a countable family 
{Wn : n ∈ ω} of open neighborhoods of the identity in H such that for every pair x, y of distinct elements 
of H, one can find n ∈ ω satisfying xWn ∩Wny = ∅.
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Lemma 5.4. ([15]) Every Hausdorff paratopological group H with countable π-character is countably Haus-
dorff.

Proof. Let {Un : n ∈ ω} be a local π-base at the identity e in H. Put Wn = UnU
−1
n ∩ U−1

n Un for every 
n ∈ ω. Now, take two distinct elements x, y ∈ H. Since H is Hausdorff, there exists an open neighborhood V
of e in H such that V xV ∩ V yV = ∅. So xV V −1 ∩ V −1V y = ∅. We can find n ∈ ω with Un ⊆ V . Therefore, 
xWn ∩Wny ⊆ xUnU

−1
n ∩ U−1

n Uny = ∅. �
Proposition 5.5. Every bounded subset of a Hausdorff paratopological group G of countable π-character 
is strongly bounded. In addition, if G is regular, then every closed bounded subset of G is compact and 
metrizable.

Proof. By Lemma 2.4, it suffices to show that every bounded subset of the semiregularization Gsr of G is 
strongly bounded. First we claim that the group Gsr has countable π-character. Indeed, let {Un : n ∈ ω}
be a countable π-base at the identity e of the group G. For every n ∈ ω, let Vn be the interior of the 
closure of Un in G. It is clear that each Vn is a nonempty open set in Gsr . Let us show that the family 
{Vn : n ∈ ω} is a π-base at e in Gsr . Take an open neighborhood W of e in Gsr . There exists an open 
neighborhood U of e in G such that IntG U ⊆ W . By our assumption, there exists n ∈ ω such that Un ⊆ U . 
Then Vn = IntG Un ⊆ IntG U ⊆ W , whence our claim follows.

By Lemma 5.4, Gsr is countably Hausdorff. Then we apply a recent result proved by Banakh and Ravsky 
in [5, Theorem 5]: Every countably Hausdorff paratopological group is submetrizable. Therefore, H = Gsr
is a regular submetrizable paratopological group. Further, every regular paratopological group is Tychonoff, 
by [5, Corollary 5]. Every Tychonoff submetrizable space is Dieudonné complete, so the closure of every 
bounded subset of H is compact. Hence every bounded subset of H is strongly bounded. Notice that by 
item (a) of Corollary 2.2, the bounded subsets of H are metrizable. �

We note, in connection with Proposition 5.5, that a closed bounded subset of a Hausdorff, first countable, 
ω-narrow paratopological group may fail to be compact. Indeed, there exists a feebly compact, ω-narrow, 
first countable, Hausdorff paratopological group which is not compact [13, Example 3].

Since precompact paratopological groups are saturated, the following problem arises in an attempt to 
generalize Corollary 3.15.

Problem 5.6. Let G be a saturated, ω-narrow paratopological group. Is every bounded subset of G strongly 
bounded?

In fact, we do not know whether every saturated, ω-narrow, regular paratopological group G satisfies 
Hs(G) ≤ ω. However, there exists a precompact (hence saturated and ω-narrow) Hausdorff paratopological 
group with uncountable Hausdorff number (see [14, Example 18]).

Given a paratopological group G, we denote by Sm(G) the symmetry number of G defined as the minimum 
cardinal number κ such that for every neighborhood U of the neutral element e in G, there exists a family 
γ of open neighborhoods of e in G such that 

⋂
γ ⊆ U−1 and |γ| ≤ κ. It is known that Sm(G) ≤ Hs(G), for 

each Hausdorff paratopological group G (see [16]). Slightly modifying [16, Example 2.29] we can construct, 
for every uncountable cardinal κ, a commutative totally ω-narrow Hausdorff paratopological group H with 
Sm(H) = κ and Hs(Hsr) = 1.

One can try to generalize Corollary 3.9 by replacing the Hausdorff number with the symmetry number:

Problem 5.7. Is every bounded subset of a Hausdorff commutative paratopological group G with Sm(G) ≤ ω

strongly bounded?



I. Sánchez, M.G. Tkachenko / Topology and its Applications 190 (2015) 42–58 57
Very recently the second listed author complemented Theorem 3.12 as follows (see [30]):

Theorem 5.8. Every bounded subset of a weakly Lindelöf ω-balanced paratopological group G is strongly 
bounded.

The proof of Theorem 5.8 leans on the following facts. First, one can assume without loss of generality 
that the group G is regular (see Lemma 2.4). Second, every regular paratopological group is Tychonoff [5, 
Corollary 5]. Third, the Dieudonné completion and Hewitt–Nachbin completion of the Tychonoff paratopo-
logical group G coincide and both contain G as a dense subgroup [30]. Let H be the Dieudonné completion 
of G. Then G is a dense C-embedded subspace of H, so G meets every nonempty Gδ-set in H. Hence 
Corollary 3.6 of [21] implies that every bounded subset of G is strongly bounded.

We do not know, however, whether ‘ω-balanced’ can be dropped in Theorem 5.8:

Problem 5.9. Is every bounded subset of a weakly Lindelöf paratopological group strongly bounded?

There exist several notions close to boundedness. A subset B of a space X is called relatively pseudocom-
pact in X if every infinite family of open sets in X each of which meets B has an accumulation point in B. 
It is also said that B is C-compact in a Tychonoff space X if the image f(B) is compact, for each continuous 
real-valued function f on X. The following implications are almost immediate (see [10, Section 2]):

pseudocompact ⇒ relatively pseudocompact ⇒ C-compact ⇒ bounded.

According to [10, Corollary 3.11], every C-compact subset of a topological group is relatively pseudocom-
pact, while C-compactness is productive in topological groups by [9, Corollary 3]. It would be interesting 
to find out whether these results remain valid in the class of paratopological groups:

Problem 5.10. Does C-compactness imply relative pseudocompactness in paratopological groups?

Problem 5.11. Is C-compactness productive in Tychonoff paratopological groups?

The authors have recently found in [18] several classes of paratopological groups in which the answer to 
both Problems 5.10 and 5.11 is affirmative.
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